久久99久久人婷婷精品综合_超碰aⅴ人人做人人爽欧美_亚洲电影第三页_日韩欧美一中文字暮专区_波多野结衣的一区二区三区_婷婷在线播放_人人视频精品_国产精品日韩精品欧美精品_亚洲免费黄色_欧美性猛交xxxxxxxx

nosql庫批量添加字段,mysql批量添加字段

為什么海量數(shù)據(jù)場景中NoSQL越來越重要

本質(zhì)是因為:隨著互聯(lián)網(wǎng)的進一步發(fā)展與各行業(yè)信息化建設進程加快、參與者的增多,人們對軟件有了更多更新的要求,需要軟件不僅能實現(xiàn)功能,而且要求保證許多人可以共同參與使用,因而軟件所需承載的數(shù)據(jù)量和吞吐量必須達到相應的需求。而目前的關系型數(shù)據(jù)庫在某些方面有一些缺點,導致不能滿足需要。

成都創(chuàng)新互聯(lián)是專業(yè)的桐廬網(wǎng)站建設公司,桐廬接單;提供成都網(wǎng)站設計、成都網(wǎng)站建設,網(wǎng)頁設計,網(wǎng)站設計,建網(wǎng)站,PHP網(wǎng)站建設等專業(yè)做網(wǎng)站服務;采用PHP框架,可快速的進行桐廬網(wǎng)站開發(fā)網(wǎng)頁制作和功能擴展;專業(yè)做搜索引擎喜愛的網(wǎng)站,專業(yè)的做網(wǎng)站團隊,希望更多企業(yè)前來合作!

具體則需要對比關系型數(shù)據(jù)庫與Nosql之間的區(qū)別可以得出

關系型數(shù)據(jù)庫

關系型數(shù)據(jù)庫把所有的數(shù)據(jù)都通過行和列的二元表現(xiàn)形式表示出來。

關系型數(shù)據(jù)庫的優(yōu)勢:

1.?保持數(shù)據(jù)的一致性(事務處理)

2.由于以標準化為前提,數(shù)據(jù)更新的開銷很?。ㄏ嗤淖侄位旧隙贾挥幸惶帲?/p>

3.?可以進行Join等復雜查詢

其中能夠保持數(shù)據(jù)的一致性是關系型數(shù)據(jù)庫的最大優(yōu)勢。

關系型數(shù)據(jù)庫的不足:

不擅長的處理

1.?大量數(shù)據(jù)的寫入處理(這點尤為重要)

2.?為有數(shù)據(jù)更新的表做索引或表結(jié)構(schema)變更

3.?字段不固定時應用

4.?對簡單查詢需要快速返回結(jié)果的處理

--大量數(shù)據(jù)的寫入處理

讀寫集中在一個數(shù)據(jù)庫上讓數(shù)據(jù)庫不堪重負,大部分網(wǎng)站已使用主從復制技術實現(xiàn)讀寫分離,以提高讀寫性能和讀庫的可擴展性。

所以在進行大量數(shù)據(jù)操作時,會使用數(shù)據(jù)庫主從模式。數(shù)據(jù)的寫入由主數(shù)據(jù)庫負責,數(shù)據(jù)的讀入由從數(shù)據(jù)庫負責,可以比較簡單地通過增加從數(shù)據(jù)庫來實現(xiàn)規(guī)模化,但是數(shù)據(jù)的寫入?yún)s完全沒有簡單的方法來解決規(guī)?;瘑栴}。

第一,要想將數(shù)據(jù)的寫入規(guī)?;?,可以考慮把主數(shù)據(jù)庫從一臺增加到兩臺,作為互相關聯(lián)復制的二元主數(shù)據(jù)庫使用,確實這樣可以把每臺主數(shù)據(jù)庫的負荷減少一半,但是更新處理會發(fā)生沖突,可能會造成數(shù)據(jù)的不一致,為了避免這樣的問題,需要把對每個表的請求分別分配給合適的主數(shù)據(jù)庫來處理。

第二,可以考慮把數(shù)據(jù)庫分割開來,分別放在不同的數(shù)據(jù)庫服務器上,比如將不同的表放在不同的數(shù)據(jù)庫服務器上,數(shù)據(jù)庫分割可以減少每臺數(shù)據(jù)庫服務器上的數(shù)據(jù)量,以便減少硬盤IO的輸入、輸出處理,實現(xiàn)內(nèi)存上的高速處理。但是由于分別存儲字不同服務器上的表之間無法進行Join處理,數(shù)據(jù)庫分割的時候就需要預先考慮這些問題,數(shù)據(jù)庫分割之后,如果一定要進行Join處理,就必須要在程序中進行關聯(lián),這是非常困難的。

--為有數(shù)據(jù)更新的表做索引或表結(jié)構變更

在使用關系型數(shù)據(jù)庫時,為了加快查詢速度需要創(chuàng)建索引,為了增加必要的字段就一定要改變表結(jié)構,為了進行這些處理,需要對表進行共享鎖定,這期間數(shù)據(jù)變更、更新、插入、刪除等都是無法進行的。如果需要進行一些耗時操作,例如為數(shù)據(jù)量比較大的表創(chuàng)建索引或是變更其表結(jié)構,就需要特別注意,長時間內(nèi)數(shù)據(jù)可能無法進行更新。

--字段不固定時的應用

如果字段不固定,利用關系型數(shù)據(jù)庫也是比較困難的,有人會說,需要的時候加個字段就可以了,這樣的方法也不是不可以,但在實際運用中每次都進行反復的表結(jié)構變更是非常痛苦的。你也可以預先設定大量的預備字段,但這樣的話,時間一長很容易弄不清除字段和數(shù)據(jù)的對應狀態(tài),即哪個字段保存有哪些數(shù)據(jù)。

--對簡單查詢需要快速返回結(jié)果的處理? (這里的“簡單”指的是沒有復雜的查詢條件)

這一點稱不上是缺點,但不管怎樣,關系型數(shù)據(jù)庫并不擅長對簡單的查詢快速返回結(jié)果,因為關系型數(shù)據(jù)庫是使用專門的sql語言進行數(shù)據(jù)讀取的,它需要對sql與越南進行解析,同時還有對表的鎖定和解鎖等這樣的額外開銷,這里并不是說關系型數(shù)據(jù)庫的速度太慢,而只是想告訴大家若希望對簡單查詢進行高速處理,則沒有必要非使用關系型數(shù)據(jù)庫不可。

NoSQL數(shù)據(jù)庫

關系型數(shù)據(jù)庫應用廣泛,能進行事務處理和表連接等復雜查詢。相對地,NoSQL數(shù)據(jù)庫只應用在特定領域,基本上不進行復雜的處理,但它恰恰彌補了之前所列舉的關系型數(shù)據(jù)庫的不足之處。

優(yōu)點:

易于數(shù)據(jù)的分散

各個數(shù)據(jù)之間存在關聯(lián)是關系型數(shù)據(jù)庫得名的主要原因,為了進行join處理,關系型數(shù)據(jù)庫不得不把數(shù)據(jù)存儲在同一個服務器內(nèi),這不利于數(shù)據(jù)的分散,這也是關系型數(shù)據(jù)庫并不擅長大數(shù)據(jù)量的寫入處理的原因。相反NoSQL數(shù)據(jù)庫原本就不支持Join處理,各個數(shù)據(jù)都是獨立設計的,很容易把數(shù)據(jù)分散在多個服務器上,故減少了每個服務器上的數(shù)據(jù)量,即使要處理大量數(shù)據(jù)的寫入,也變得更加容易,數(shù)據(jù)的讀入操作當然也同樣容易。

典型的NoSQL數(shù)據(jù)庫

臨時性鍵值存儲(memcached、Redis)、永久性鍵值存儲(ROMA、Redis)、面向文檔的數(shù)據(jù)庫(MongoDB、CouchDB)、面向列的數(shù)據(jù)庫(Cassandra、HBase)

一、 鍵值存儲

它的數(shù)據(jù)是以鍵值的形式存儲的,雖然它的速度非???,但基本上只能通過鍵的完全一致查詢獲取數(shù)據(jù),根據(jù)數(shù)據(jù)的保存方式可以分為臨時性、永久性和兩者兼具 三種。

(1)臨時性

所謂臨時性就是數(shù)據(jù)有可能丟失,memcached把所有數(shù)據(jù)都保存在內(nèi)存中,這樣保存和讀取的速度非???,但是當memcached停止時,數(shù)據(jù)就不存在了。由于數(shù)據(jù)保存在內(nèi)存中,所以無法操作超出內(nèi)存容量的數(shù)據(jù),舊數(shù)據(jù)會丟失??偨Y(jié)來說:

。在內(nèi)存中保存數(shù)據(jù)

??梢赃M行非常快速的保存和讀取處理

。數(shù)據(jù)有可能丟失

(2)永久性

所謂永久性就是數(shù)據(jù)不會丟失,這里的鍵值存儲是把數(shù)據(jù)保存在硬盤上,與臨時性比起來,由于必然要發(fā)生對硬盤的IO操作,所以性能上還是有差距的,但數(shù)據(jù)不會丟失是它最大的優(yōu)勢??偨Y(jié)來說:

。在硬盤上保存數(shù)據(jù)

??梢赃M行非??焖俚谋4婧妥x取處理(但無法與memcached相比)

。數(shù)據(jù)不會丟失

(3) 兩者兼?zhèn)?/p>

Redis屬于這種類型。Redis有些特殊,臨時性和永久性兼具。Redis首先把數(shù)據(jù)保存在內(nèi)存中,在滿足特定條件(默認是?15分鐘一次以上,5分鐘內(nèi)10個以上,1分鐘內(nèi)10000個以上的鍵發(fā)生變更)的時候?qū)?shù)據(jù)寫入到硬盤中,這樣既確保了內(nèi)存中數(shù)據(jù)的處理速度,又可以通過寫入硬盤來保證數(shù)據(jù)的永久性,這種類型的數(shù)據(jù)庫特別適合處理數(shù)組類型的數(shù)據(jù)??偨Y(jié)來說:

。同時在內(nèi)存和硬盤上保存數(shù)據(jù)

??梢赃M行非??焖俚谋4婧妥x取處理

。保存在硬盤上的數(shù)據(jù)不會消失(可以恢復)

。適合于處理數(shù)組類型的數(shù)據(jù)

二、面向文檔的數(shù)據(jù)庫

MongoDB、CouchDB屬于這種類型,它們屬于NoSQL數(shù)據(jù)庫,但與鍵值存儲相異。

(1)不定義表結(jié)構

即使不定義表結(jié)構,也可以像定義了表結(jié)構一樣使用,還省去了變更表結(jié)構的麻煩。

(2)可以使用復雜的查詢條件

跟鍵值存儲不同的是,面向文檔的數(shù)據(jù)庫可以通過復雜的查詢條件來獲取數(shù)據(jù),雖然不具備事務處理和Join這些關系型數(shù)據(jù)庫所具有的處理能力,但初次以外的其他處理基本上都能實現(xiàn)。

三、?面向列的數(shù)據(jù)庫

Cassandra、HBae、HyperTable屬于這種類型,由于近年來數(shù)據(jù)量出現(xiàn)爆發(fā)性增長,這種類型的NoSQL數(shù)據(jù)庫尤其引入注目。

普通的關系型數(shù)據(jù)庫都是以行為單位來存儲數(shù)據(jù)的,擅長以行為單位的讀入處理,比如特定條件數(shù)據(jù)的獲取。因此,關系型數(shù)據(jù)庫也被成為面向行的數(shù)據(jù)庫。相反,面向列的數(shù)據(jù)庫是以列為單位來存儲數(shù)據(jù)的,擅長以列為單位讀入數(shù)據(jù)。

面向列的數(shù)據(jù)庫具有搞擴展性,即使數(shù)據(jù)增加也不會降低相應的處理速度(特別是寫入速度),所以它主要應用于需要處理大量數(shù)據(jù)的情況。另外,把它作為批處理程序的存儲器來對大量數(shù)據(jù)進行更新也是非常有用的。但由于面向列的數(shù)據(jù)庫跟現(xiàn)行數(shù)據(jù)庫存儲的思維方式有很大不同,故應用起來十分困難。

總結(jié):關系型數(shù)據(jù)庫與NoSQL數(shù)據(jù)庫并非對立而是互補的關系,即通常情況下使用關系型數(shù)據(jù)庫,在適合使用NoSQL的時候使用NoSQL數(shù)據(jù)庫,讓NoSQL數(shù)據(jù)庫對關系型數(shù)據(jù)庫的不足進行彌補。

NoSQL如何實現(xiàn)數(shù)據(jù)的增刪改查?

package basic;

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.PreparedStatement;

import java.sql.ResultSet;

import java.sql.SQLException;

import java.sql.Statement;

public class JDBC {

public void findAll() {

try {

// 獲得數(shù)據(jù)庫驅(qū)動

//由于長時間不寫,驅(qū)動名和URL都忘記了,不知道對不對,你應該知道的,自己改一下的哈

String url = "jdbc:oracle:thin:@localhost:1521:XE";

String userName = "system";

String password = "system";

Class.forName("oracle.jdbc.driver.OracleDriver");

// 創(chuàng)建連接

Connection conn = DriverManager.getConnection(url, userName,

password);

// 新建發(fā)送sql語句的對象

Statement st = conn.createStatement();

// 執(zhí)行sql

String sql = "select * from users";

ResultSet rs = st.executeQuery(sql);

// 處理結(jié)果

while(rs.next()){

//這個地方就是給你的封裝類屬性賦值

System.out.println("UserName:"+rs.getString(0));

}

// 關閉連接

rs.close();

st.close();

conn.close();

} catch (ClassNotFoundException e) {

// TODO Auto-generated catch block

e.printStackTrace();

} catch (SQLException e) {

// TODO Auto-generated catch block

e.printStackTrace();

}

}

public void delete(){

try {

//步驟還是那六個步驟,前邊的兩步是一樣的

String url = "jdbc:oracle:thin:@localhost:1521:XE";

String userName = "system";

String password = "system";

Class.forName("oracle.jdbc.driver.OracleDriver");

Connection conn = DriverManager.getConnection(url,userName,password);

//這里的發(fā)送sql語句的對象是PreparedStatement,成為預處理sql對象,因為按條件刪除是需要不定值的

String sql = "delete from users where id = ?";

PreparedStatement ps = conn.prepareStatement(sql);

ps.setInt(0, 1);

int row = ps.executeUpdate();

if(row!=0){

System.out.println("刪除成功!");

}

// 關閉連接

rs.close();

st.close();

conn.close();

} catch (ClassNotFoundException e) {

// TODO Auto-generated catch block

e.printStackTrace();

} catch (SQLException e) {

// TODO Auto-generated catch block

e.printStackTrace();

}

}

}

nosql是什么

NoSQL,泛指非關系型的數(shù)據(jù)庫。隨著互聯(lián)網(wǎng)web2.0網(wǎng)站的興起,傳統(tǒng)的關系數(shù)據(jù)庫在應付web2.0網(wǎng)站,特別是超大規(guī)模和高并發(fā)的SNS類型的web2.0純動態(tài)網(wǎng)站已經(jīng)顯得力不從心,暴露了很多難以克服的問題,而非關系型的數(shù)據(jù)庫則由于其本身的特點得到了非常迅速的發(fā)展。NoSQL數(shù)據(jù)庫的產(chǎn)生就是為了解決大規(guī)模數(shù)據(jù)集合多重數(shù)據(jù)種類帶來的挑戰(zhàn),尤其是大數(shù)據(jù)應用難題。

雖然NoSQL流行語火起來才短短一年的時間,但是不可否認,現(xiàn)在已經(jīng)開始了第二代運動。盡管早期的堆棧代碼只能算是一種實驗,然而現(xiàn)在的系統(tǒng)已經(jīng)更加的成熟、穩(wěn)定。不過現(xiàn)在也面臨著一個嚴酷的事實:技術越來越成熟——以至于原來很好的NoSQL數(shù)據(jù)存儲不得不進行重寫,也有少數(shù)人認為這就是所謂的2.0版本。這里列出一些比較知名的工具,可以為大數(shù)據(jù)建立快速、可擴展的存儲庫。

NoSQL(NoSQL = Not Only SQL ),意即“不僅僅是SQL”,是一項全新的數(shù)據(jù)庫革命性運動,早期就有人提出,發(fā)展至2009年趨勢越發(fā)高漲。NoSQL的擁護者們提倡運用非關系型的數(shù)據(jù)存儲,相對于鋪天蓋地的關系型數(shù)據(jù)庫運用,這一概念無疑是一種全新的思維的注入。

對于NoSQL并沒有一個明確的范圍和定義,但是他們都普遍存在下面一些共同特征:

不需要預定義模式:不需要事先定義數(shù)據(jù)模式,預定義表結(jié)構。數(shù)據(jù)中的每條記錄都可能有不同的屬性和格式。當插入數(shù)據(jù)時,并不需要預先定義它們的模式。

無共享架構:相對于將所有數(shù)據(jù)存儲的存儲區(qū)域網(wǎng)絡中的全共享架構。NoSQL往往將數(shù)據(jù)劃分后存儲在各個本地服務器上。因為從本地磁盤讀取數(shù)據(jù)的性能往往好于通過網(wǎng)絡傳輸讀取數(shù)據(jù)的性能,從而提高了系統(tǒng)的性能。

彈性可擴展:可以在系統(tǒng)運行的時候,動態(tài)增加或者刪除結(jié)點。不需要停機維護,數(shù)據(jù)可以自動遷移。

分區(qū):相對于將數(shù)據(jù)存放于同一個節(jié)點,NoSQL數(shù)據(jù)庫需要將數(shù)據(jù)進行分區(qū),將記錄分散在多個節(jié)點上面。并且通常分區(qū)的同時還要做復制。這樣既提高了并行性能,又能保證沒有單點失效的問題。

異步復制:和RAID存儲系統(tǒng)不同的是,NoSQL中的復制,往往是基于日志的異步復制。這樣,數(shù)據(jù)就可以盡快地寫入一個節(jié)點,而不會被網(wǎng)絡傳輸引起遲延。缺點是并不總是能保證一致性,這樣的方式在出現(xiàn)故障的時候,可能會丟失少量的數(shù)據(jù)。

BASE:相對于事務嚴格的ACID特性,NoSQL數(shù)據(jù)庫保證的是BASE特性。BASE是最終一致性和軟事務。

NoSQL數(shù)據(jù)庫并沒有一個統(tǒng)一的架構,兩種NoSQL數(shù)據(jù)庫之間的不同,甚至遠遠超過兩種關系型數(shù)據(jù)庫的不同。可以說,NoSQL各有所長,成功的NoSQL必然特別適用于某些場合或者某些應用,在這些場合中會遠遠勝過關系型數(shù)據(jù)庫和其他的NoSQL。

目前哪些NoSQL數(shù)據(jù)庫應用廣泛,各有什么特點

特點:

它們可以處理超大量的數(shù)據(jù)。

它們運行在便宜的PC服務器集群上。

PC集群擴充起來非常方便并且成本很低,避免了“sharding”操作的復雜性和成本。

它們擊碎了性能瓶頸。

NoSQL的支持者稱,通過NoSQL架構可以省去將Web或Java應用和數(shù)據(jù)轉(zhuǎn)換成SQL友好格式的時間,執(zhí)行速度變得更快。

“SQL并非適用于所有的程序代碼,” 對于那些繁重的重復操作的數(shù)據(jù),SQL值得花錢。但是當數(shù)據(jù)庫結(jié)構非常簡單時,SQL可能沒有太大用處。

沒有過多的操作。

雖然NoSQL的支持者也承認關系數(shù)據(jù)庫提供了無可比擬的功能集合,而且在數(shù)據(jù)完整性上也發(fā)揮絕對穩(wěn)定,他們同時也表示,企業(yè)的具體需求可能沒有那么多。

Bootstrap支持

因為NoSQL項目都是開源的,因此它們?nèi)狈烫峁┑恼街С帧_@一點它們與大多數(shù)開源項目一樣,不得不從社區(qū)中尋求支持。

優(yōu)點:

易擴展

NoSQL數(shù)據(jù)庫種類繁多,但是一個共同的特點都是去掉關系數(shù)據(jù)庫的關系型特性。數(shù)據(jù)之間無關系,這樣就非常容易擴展。也無形之間,在架構的層面上帶來了可擴展的能力。

大數(shù)據(jù)量,高性能

NoSQL數(shù)據(jù)庫都具有非常高的讀寫性能,尤其在大數(shù)據(jù)量下,同樣表現(xiàn)優(yōu)秀。這得益于它的無關系性,數(shù)據(jù)庫的結(jié)構簡單。一般MySQL使用 Query Cache,每次表的更新Cache就失效,是一種大粒度的Cache,在針對web2.0的交互頻繁的應用,Cache性能不高。而NoSQL的 Cache是記錄級的,是一種細粒度的Cache,所以NoSQL在這個層面上來說就要性能高很多了。

靈活的數(shù)據(jù)模型

NoSQL無需事先為要存儲的數(shù)據(jù)建立字段,隨時可以存儲自定義的數(shù)據(jù)格式。而在關系數(shù)據(jù)庫里,增刪字段是一件非常麻煩的事情。如果是非常大數(shù)據(jù)量的表,增加字段簡直就是一個噩夢。這點在大數(shù)據(jù)量的web2.0時代尤其明顯。

高可用

NoSQL在不太影響性能的情況,就可以方便的實現(xiàn)高可用的架構。比如Cassandra,HBase模型,通過復制模型也能實現(xiàn)高可用。

主要應用:

Apache HBase

這個大數(shù)據(jù)管理平臺建立在谷歌強大的BigTable管理引擎基礎上。作為具有開源、Java編碼、分布式多個優(yōu)勢的數(shù)據(jù)庫,Hbase最初被設計應用于Hadoop平臺,而這一強大的數(shù)據(jù)管理工具,也被Facebook采用,用于管理消息平臺的龐大數(shù)據(jù)。

Apache Storm

用于處理高速、大型數(shù)據(jù)流的分布式實時計算系統(tǒng)。Storm為Apache Hadoop添加了可靠的實時數(shù)據(jù)處理功能,同時還增加了低延遲的儀表板、安全警報,改進了原有的操作方式,幫助企業(yè)更有效率地捕獲商業(yè)機會、發(fā)展新業(yè)務。

Apache Spark

該技術采用內(nèi)存計算,從多迭代批量處理出發(fā),允許將數(shù)據(jù)載入內(nèi)存做反復查詢,此外還融合數(shù)據(jù)倉庫、流處理和圖計算等多種計算范式,Spark用Scala語言實現(xiàn),構建在HDFS上,能與Hadoop很好的結(jié)合,而且運行速度比MapReduce快100倍。

Apache Hadoop

該技術迅速成為了大數(shù)據(jù)管理標準之一。當它被用來管理大型數(shù)據(jù)集時,對于復雜的分布式應用,Hadoop體現(xiàn)出了非常好的性能,平臺的靈活性使它可以運行在商用硬件系統(tǒng),它還可以輕松地集成結(jié)構化、半結(jié)構化和甚至非結(jié)構化數(shù)據(jù)集。

Apache Drill

你有多大的數(shù)據(jù)集?其實無論你有多大的數(shù)據(jù)集,Drill都能輕松應對。通過支持HBase、Cassandra和MongoDB,Drill建立了交互式分析平臺,允許大規(guī)模數(shù)據(jù)吞吐,而且能很快得出結(jié)果。

Apache Sqoop

也許你的數(shù)據(jù)現(xiàn)在還被鎖定于舊系統(tǒng)中,Sqoop可以幫你解決這個問題。這一平臺采用并發(fā)連接,可以將數(shù)據(jù)從關系數(shù)據(jù)庫系統(tǒng)方便地轉(zhuǎn)移到Hadoop中,可以自定義數(shù)據(jù)類型以及元數(shù)據(jù)傳播的映射。事實上,你還可以將數(shù)據(jù)(如新的數(shù)據(jù))導入到HDFS、Hive和Hbase中。

Apache Giraph

這是功能強大的圖形處理平臺,具有很好可擴展性和可用性。該技術已經(jīng)被Facebook采用,Giraph可以運行在Hadoop環(huán)境中,可以將它直接部署到現(xiàn)有的Hadoop系統(tǒng)中。通過這種方式,你可以得到強大的分布式作圖能力,同時還能利用上現(xiàn)有的大數(shù)據(jù)處理引擎。

Cloudera Impala

Impala模型也可以部署在你現(xiàn)有的Hadoop群集上,監(jiān)視所有的查詢。該技術和MapReduce一樣,具有強大的批處理能力,而且Impala對于實時的SQL查詢也有很好的效果,通過高效的SQL查詢,你可以很快的了解到大數(shù)據(jù)平臺上的數(shù)據(jù)。

Gephi

它可以用來對信息進行關聯(lián)和量化處理,通過為數(shù)據(jù)創(chuàng)建功能強大的可視化效果,你可以從數(shù)據(jù)中得到不一樣的洞察力。Gephi已經(jīng)支持多個圖表類型,而且可以在具有上百萬個節(jié)點的大型網(wǎng)絡上運行。Gephi具有活躍的用戶社區(qū),Gephi還提供了大量的插件,可以和現(xiàn)有系統(tǒng)完美的集成到一起,它還可以對復雜的IT連接、分布式系統(tǒng)中各個節(jié)點、數(shù)據(jù)流等信息進行可視化分析。

MongoDB

這個堅實的平臺一直被很多組織推崇,它在大數(shù)據(jù)管理上有極好的性能。MongoDB最初是由DoubleClick公司的員工創(chuàng)建,現(xiàn)在該技術已經(jīng)被廣泛的應用于大數(shù)據(jù)管理。MongoDB是一個應用開源技術開發(fā)的NoSQL數(shù)據(jù)庫,可以用于在JSON這樣的平臺上存儲和處理數(shù)據(jù)。目前,紐約時報、Craigslist以及眾多企業(yè)都采用了MongoDB,幫助他們管理大型數(shù)據(jù)集。(Couchbase服務器也作為一個參考)。

十大頂尖公司:

Amazon Web Services

Forrester將AWS稱為“云霸主”,談到云計算領域的大數(shù)據(jù),那就不得不提到亞馬遜。該公司的Hadoop產(chǎn)品被稱為EMR(Elastic Map Reduce),AWS解釋這款產(chǎn)品采用了Hadoop技術來提供大數(shù)據(jù)管理服務,但它不是純開源Hadoop,經(jīng)過修改后現(xiàn)在被專門用在AWS云上。

Forrester稱EMR有很好的市場前景。很多公司基于EMR為客戶提供服務,有一些公司將EMR應用于數(shù)據(jù)查詢、建模、集成和管理。而且AWS還在創(chuàng)新,F(xiàn)orrester稱未來EMR可以基于工作量的需要自動縮放調(diào)整大小。亞馬遜計劃為其產(chǎn)品和服務提供更強大的EMR支持,包括它的RedShift數(shù)據(jù)倉庫、新公布的Kenesis實時處理引擎以及計劃中的NoSQL數(shù)據(jù)庫和商業(yè)智能工具。不過AWS還沒有自己的Hadoop發(fā)行版。

Cloudera

Cloudera有開源Hadoop的發(fā)行版,這個發(fā)行版采用了Apache Hadoop開源項目的很多技術,不過基于這些技術的發(fā)行版也有很大的進步。Cloudera為它的Hadoop發(fā)行版開發(fā)了很多功能,包括Cloudera管理器,用于管理和監(jiān)控,以及名為Impala的SQL引擎等。Cloudera的Hadoop發(fā)行版基于開源Hadoop,但也不是純開源的產(chǎn)品。當Cloudera的客戶需要Hadoop不具備的某些功能時,Cloudera的工程師們就會實現(xiàn)這些功能,或者找一個擁有這項技術的合作伙伴。Forrester表示:“Cloudera的創(chuàng)新方法忠于核心Hadoop,但因為其可實現(xiàn)快速創(chuàng)新并積極滿足客戶需求,這一點使它不同于其他那些供應商。”目前,Cloudera的平臺已經(jīng)擁有200多個付費客戶,一些客戶在Cloudera的技術支持下已經(jīng)可以跨1000多個節(jié)點實現(xiàn)對PB級數(shù)據(jù)的有效管理。

Hortonworks

和Cloudera一樣,Hortonworks是一個純粹的Hadoop技術公司。與Cloudera不同的是,Hortonworks堅信開源Hadoop比任何其他供應商的Hadoop發(fā)行版都要強大。Hortonworks的目標是建立Hadoop生態(tài)圈和Hadoop用戶社區(qū),推進開源項目的發(fā)展。Hortonworks平臺和開源Hadoop聯(lián)系緊密,公司管理人員表示這會給用戶帶來好處,因為它可以防止被供應商套牢(如果Hortonworks的客戶想要離開這個平臺,他們可以輕松轉(zhuǎn)向其他開源平臺)。這并不是說Hortonworks完全依賴開源Hadoop技術,而是因為該公司將其所有開發(fā)的成果回報給了開源社區(qū),比如Ambari,這個工具就是由Hortonworks開發(fā)而成,用來填充集群管理項目漏洞。Hortonworks的方案已經(jīng)得到了Teradata、Microsoft、Red Hat和SAP這些供應商的支持。

IBM

當企業(yè)考慮一些大的IT項目時,很多人首先會想到IBM。IBM是Hadoop項目的主要參與者之一,F(xiàn)orrester稱IBM已有100多個Hadoop部署,它的很多客戶都有PB級的數(shù)據(jù)。IBM在網(wǎng)格計算、全球數(shù)據(jù)中心和企業(yè)大數(shù)據(jù)項目實施等眾多領域有著豐富的經(jīng)驗。“IBM計劃繼續(xù)整合SPSS分析、高性能計算、BI工具、數(shù)據(jù)管理和建模、應對高性能計算的工作負載管理等眾多技術。”

Intel

和AWS類似,英特爾不斷改進和優(yōu)化Hadoop使其運行在自己的硬件上,具體來說,就是讓Hadoop運行在其至強芯片上,幫助用戶打破Hadoop系統(tǒng)的一些限制,使軟件和硬件結(jié)合的更好,英特爾的Hadoop發(fā)行版在上述方面做得比較好。Forrester指出英特爾在最近才推出這個產(chǎn)品,所以公司在未來還有很多改進的可能,英特爾和微軟都被認為是Hadoop市場上的潛力股。

MapR Technologies

MapR的Hadoop發(fā)行版目前為止也許是最好的了,不過很多人可能都沒有聽說過。Forrester對Hadoop用戶的調(diào)查顯示,MapR的評級最高,其發(fā)行版在架構和數(shù)據(jù)處理能力上都獲得了最高分。MapR已將一套特殊功能融入其Hadoop發(fā)行版中。例如網(wǎng)絡文件系統(tǒng)(NFS)、災難恢復以及高可用性功能。Forrester說MapR在Hadoop市場上沒有Cloudera和Hortonworks那樣的知名度,MapR要成為一個真正的大企業(yè),還需要加強伙伴關系和市場營銷。

Microsoft

微軟在開源軟件問題上一直很低調(diào),但在大數(shù)據(jù)形勢下,它不得不考慮讓Windows也兼容Hadoop,它還積極投入到開源項目中,以更廣泛地推動Hadoop生態(tài)圈的發(fā)展。我們可以在微軟的公共云Windows Azure HDInsight產(chǎn)品中看到其成果。微軟的Hadoop服務基于Hortonworks的發(fā)行版,而且是為Azure量身定制的。

微軟也有一些其他的項目,包括名為Polybase的項目,讓Hadoop查詢實現(xiàn)了SQLServer查詢的一些功能。Forrester說:“微軟在數(shù)據(jù)庫、數(shù)據(jù)倉庫、云、OLAP、BI、電子表格(包括PowerPivot)、協(xié)作和開發(fā)工具市場上有很大優(yōu)勢,而且微軟擁有龐大的用戶群,但要在Hadoop這個領域成為行業(yè)領導者還有很遠的路要走?!?/p>

Pivotal Software

EMC和Vmware部分大數(shù)據(jù)業(yè)務分拆組合產(chǎn)生了Pivotal。Pivotal一直努力構建一個性能優(yōu)越的Hadoop發(fā)行版,為此,Pivotal在開源Hadoop的基礎上又添加了一些新的工具,包括一個名為HAWQ的SQL引擎以及一個專門解決大數(shù)據(jù)問題的Hadoop應用。Forrester稱Pivotal Hadoop平臺的優(yōu)勢在于它整合了Pivotal、EMC、Vmware的眾多技術,Pivotal的真正優(yōu)勢實際上等于EMC和Vmware兩大公司為其撐腰。到目前為止,Pivotal的用戶還不到100個,而且大多是中小型客戶。

Teradata

對于Teradata來說,Hadoop既是一種威脅也是一種機遇。數(shù)據(jù)管理,特別是關于SQL和關系數(shù)據(jù)庫這一領域是Teradata的專長。所以像Hadoop這樣的NoSQL平臺崛起可能會威脅到Teradata。相反,Teradata接受了Hadoop,通過與Hortonworks合作,Teradata在Hadoop平臺集成了SQL技術,這使Teradata的客戶可以在Hadoop平臺上方便地使用存儲在Teradata數(shù)據(jù)倉庫中的數(shù)據(jù)。

AMPLab

通過將數(shù)據(jù)轉(zhuǎn)變?yōu)樾畔ⅲ覀儾趴梢岳斫馐澜?,而這也正是AMPLab所做的。AMPLab致力于機器學習、數(shù)據(jù)挖掘、數(shù)據(jù)庫、信息檢索、自然語言處理和語音識別等多個領域,努力改進對信息包括不透明數(shù)據(jù)集內(nèi)信息的甄別技術。除了Spark,開源分布式SQL查詢引擎Shark也源于AMPLab,Shark具有極高的查詢效率,具有良好的兼容性和可擴展性。近幾年的發(fā)展使計算機科學進入到全新的時代,而AMPLab為我們設想一個運用大數(shù)據(jù)、云計算、通信等各種資源和技術靈活解決難題的方案,以應對越來越復雜的各種難題。

nosql數(shù)據(jù)庫庫和sql數(shù)據(jù)庫的區(qū)別

一、概念

SQL?(Structured?Query?Language)?數(shù)據(jù)庫,指關系型數(shù)據(jù)庫。主要代表:SQL?Server,Oracle,MySQL(開源),PostgreSQL(開源)。

NoSQL(Not?Only?SQL)泛指非關系型數(shù)據(jù)庫。主要代表:MongoDB,Redis,CouchDB。

二、區(qū)別

1、存儲方式

SQL數(shù)據(jù)存在特定結(jié)構的表中;而NoSQL則更加靈活和可擴展,存儲方式可以省是JSON文檔、哈希表或者其他方式。SQL通常以數(shù)據(jù)庫表形式存儲數(shù)據(jù)。舉個栗子,存?zhèn)€學生借書數(shù)據(jù):

而NoSQL存儲方式比較靈活,比如使用類JSON文件存儲上表中熊大的借閱數(shù)據(jù):

2、表/數(shù)據(jù)集合的數(shù)據(jù)的關系

在SQL中,必須定義好表和字段結(jié)構后才能添加數(shù)據(jù),例如定義表的主鍵(primary?key),索引(index),觸發(fā)器(trigger),存儲過程(stored?procedure)等。表結(jié)構可以在被定義之后更新,但是如果有比較大的結(jié)構變更的話就會變得比較復雜。在NoSQL中,數(shù)據(jù)可以在任何時候任何地方添加,不需要先定義表。例如下面這段代碼會自動創(chuàng)建一個新的"借閱表"數(shù)據(jù)集合:

NoSQL也可以在數(shù)據(jù)集中建立索引。以MongoDB為例,會自動在數(shù)據(jù)集合創(chuàng)建后創(chuàng)建唯一值_id字段,這樣的話就可以在數(shù)據(jù)集創(chuàng)建后增加索引。

從這點來看,NoSQL可能更加適合初始化數(shù)據(jù)還不明確或者未定的項目中。

3、外部數(shù)據(jù)存儲

SQL中如何需要增加外部關聯(lián)數(shù)據(jù)的話,規(guī)范化做法是在原表中增加一個外鍵,關聯(lián)外部數(shù)據(jù)表。例如需要在借閱表中增加審核人信息,先建立一個審核人表:

再在原來的借閱人表中增加審核人外鍵:

這樣如果我們需要更新審核人個人信息的時候只需要更新審核人表而不需要對借閱人表做更新。而在NoSQL中除了這種規(guī)范化的外部數(shù)據(jù)表做法以外,我們還能用如下的非規(guī)范化方式把外部數(shù)據(jù)直接放到原數(shù)據(jù)集中,以提高查詢效率。缺點也比較明顯,更新審核人數(shù)據(jù)的時候?qū)容^麻煩。

4、SQL中的JOIN查詢

SQL中可以使用JOIN表鏈接方式將多個關系數(shù)據(jù)表中的數(shù)據(jù)用一條簡單的查詢語句查詢出來。NoSQL暫未提供類似JOIN的查詢方式對多個數(shù)據(jù)集中的數(shù)據(jù)做查詢。所以大部分NoSQL使用非規(guī)范化的數(shù)據(jù)存儲方式存儲數(shù)據(jù)。

5、數(shù)據(jù)耦合性

SQL中不允許刪除已經(jīng)被使用的外部數(shù)據(jù),例如審核人表中的"熊三"已經(jīng)被分配給了借閱人熊大,那么在審核人表中將不允許刪除熊三這條數(shù)據(jù),以保證數(shù)據(jù)完整性。而NoSQL中則沒有這種強耦合的概念,可以隨時刪除任何數(shù)據(jù)。

6、事務

SQL中如果多張表數(shù)據(jù)需要同批次被更新,即如果其中一張表更新失敗的話其他表也不能更新成功。這種場景可以通過事務來控制,可以在所有命令完成后再統(tǒng)一提交事務。而NoSQL中沒有事務這個概念,每一個數(shù)據(jù)集的操作都是原子級的。

7、增刪改查語法

8、查詢性能

在相同水平的系統(tǒng)設計的前提下,因為NoSQL中省略了JOIN查詢的消耗,故理論上性能上是優(yōu)于SQL的。

高并發(fā)寫選sql還是nosql?

SQL的獨特優(yōu)勢包括:

1. SQL能夠加強與數(shù)據(jù)的交互,并允許對單個數(shù)據(jù)庫設計提出問題。這是很關鍵的特征,因為無法交互的數(shù)據(jù)基本上是沒用的,并且,增強的交互性能夠帶來新的見解、新的問題和更有意義的未來交互。

2. SQL是標準化的,使用戶能夠跨系統(tǒng)運用他們的知識,并對第三方附件和工具提供支持。

3. SQL能夠擴展,并且是多功能和經(jīng)過時間驗證的,這能夠解決從快寫為主導的傳輸?shù)綊呙杳芗蜕钊敕治龅葐栴}。

4. SQL對數(shù)據(jù)呈現(xiàn)和存儲采用正交形式,一些SQL系統(tǒng)支持JSON和其他結(jié)構化對象格式,比NoSQL具有更好的性能和更多功能。

NoSQL特點:

易擴展

NoSQL數(shù)據(jù)庫種類繁多,但是一個共同的特點都是去掉關系數(shù)據(jù)庫的關系型特性。數(shù)據(jù)之間無關系,這樣就非常容易擴展。也無形之間,在架構的層面上帶來了可擴展的能力。

大數(shù)據(jù)量,高性能

NoSQL數(shù)據(jù)庫都具有非常高的讀寫性能,尤其在大數(shù)據(jù)量下,同樣表現(xiàn)優(yōu)秀。這得益于它的無關系性,數(shù)據(jù)庫的結(jié)構簡單。NoSQL的Cache是記錄級的,是一種細粒度的Cache,所以NoSQL在這個層面上來說就要性能高很多了。

靈活的數(shù)據(jù)模型

NoSQL無需事先為要存儲的數(shù)據(jù)建立字段,隨時可以存儲自定義的數(shù)據(jù)格式。而在關系數(shù)據(jù)庫里,增刪字段是一件非常麻煩的事情。如果是非常大數(shù)據(jù)量的表,增加字段簡直就是一個噩夢。這點在大數(shù)據(jù)量的web2.0時代尤其明顯。

高可用

NoSQL在不太影響性能的情況,就可以方便的實現(xiàn)高可用的架構。比如Cassandra,HBase模型,通過復制模型也能實現(xiàn)高可用。

網(wǎng)頁標題:nosql庫批量添加字段,mysql批量添加字段
URL分享:http://www.js-pz168.com/article40/hceseo.html

成都網(wǎng)站建設公司_創(chuàng)新互聯(lián),為您提供外貿(mào)建站網(wǎng)站導航、App開發(fā)、企業(yè)網(wǎng)站制作、網(wǎng)站制作、自適應網(wǎng)站

廣告

聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時需注明來源: 創(chuàng)新互聯(lián)

成都網(wǎng)頁設計公司
久久99久久人婷婷精品综合_超碰aⅴ人人做人人爽欧美_亚洲电影第三页_日韩欧美一中文字暮专区_波多野结衣的一区二区三区_婷婷在线播放_人人视频精品_国产精品日韩精品欧美精品_亚洲免费黄色_欧美性猛交xxxxxxxx
亚洲激情男女视频| 不卡的av电影在线观看| av成人动漫在线观看| 国内成+人亚洲| 91久久人澡人人添人人爽欧美| 日韩一区二区三区四区| 1024亚洲合集| 久久av资源站| 国产精品xxxx| 91久久香蕉国产日韩欧美9色| 久久综合久久综合亚洲| 亚洲影院理伦片| 国产成人av一区二区三区在线| 精品日本一区二区三区在线观看| 91国偷自产一区二区开放时间| 久久亚洲影视婷婷| 亚洲成av人**亚洲成av**| 成人黄色片在线观看| 日韩国产欧美一区| 日韩欧美成人一区| 亚洲国产日韩在线一区模特| 东方欧美亚洲色图在线| 日韩激情久久| 久久一区二区三区国产精品| 香蕉成人伊视频在线观看| 成人午夜激情影院| 亚洲电影免费| 国产视频一区在线播放| 美女视频黄免费的久久| 国产女人水真多18毛片18精品| 精品视频一区 二区 三区| 国产精品动漫网站| 国产电影一区二区三区| 污视频在线免费观看一区二区三区| 精品国产成人系列| 日韩av中文在线观看| 国产精品久久久久久久天堂第1集 国产精品久久久久久久免费大片 国产精品久久久久久久久婷婷 | 国产麻豆日韩| 91麻豆精品国产91久久久久久久久| 亚洲私人黄色宅男| 成人午夜av影视| 色欧美88888久久久久久影院| 国产精品视频看| 国产成人h网站| 一本到一区二区三区| 国产精品第五页| 成人夜色视频网站在线观看| 正在播放精油久久| 中文字幕视频一区二区三区久| 国产精品香蕉一区二区三区| 亚洲欧美电影在线观看| 中文乱码免费一区二区| 国产高清久久久久| 综合久久国产| 亚洲免费观看高清完整版在线观看熊| 成人高清视频在线观看| 在线观看不卡视频| 一级女性全黄久久生活片免费| 91影院在线免费观看| 欧美男同性恋视频网站| 香蕉久久夜色精品国产使用方法| 国内成+人亚洲| 久久久综合激的五月天| 国产精品综合av一区二区国产馆| 伊人色综合影院| 亚洲免费看黄网站| 成人午夜电影在线播放| 欧美变态凌虐bdsm| 国产在线精品一区二区三区不卡| 亚洲资源在线网| 亚洲精品亚洲人成人网在线播放| www日韩av| 久久久影视传媒| 成人性视频网站| 欧美日韩的一区二区| 日韩电影在线观看一区| 欧美日韩在线观看一区| 国产精品区一区二区三| 91麻豆免费看| 亚洲精品在线观| 成人黄色小视频| 欧美一级黄色大片| 国产一区二区精品久久99| 日本韩国欧美在线| 日韩影院免费视频| 亚洲精品中文字幕乱码三区不卡| 亚洲欧美色综合| 久久久久se| 中文字幕在线视频一区| 高清av免费一区中文字幕| 久久久蜜桃精品| 99国产精品一区| 精品欧美久久久| 成人激情校园春色| 日韩欧美aaaaaa| 国产成人av一区二区三区在线| 在线不卡一区二区| 国产在线精品免费| 欧美嫩在线观看| 国产一区二区在线观看免费| 欧美日韩精品一区视频| 久久国产精品一区二区| 欧美在线不卡视频| 久草热8精品视频在线观看| 欧美在线观看一二区| 老司机精品视频一区二区三区| 91久久精品一区二区二区| 免费在线欧美视频| 欧美综合欧美视频| 精品中文字幕一区二区| 欧美日韩一区二区三区四区五区| 狠狠色2019综合网| 在线不卡中文字幕| 成人激情小说网站| 久久久久久久久久久久久久久99| 91社区在线播放| 国产精品视频免费看| 久久精品日产第一区二区三区| 亚洲精品中文字幕在线观看| 日韩在线观看电影完整版高清免费| 亚洲国产精品久久久男人的天堂| 亚洲一区不卡在线| 美脚の诱脚舐め脚责91| 777xxx欧美| 不卡一区二区中文字幕| 国产亚洲短视频| 精品伊人久久大线蕉色首页| 一区二区三区成人| 中文一区一区三区免费| 精东粉嫩av免费一区二区三区| 91精品国产综合久久精品性色| av资源站一区| 国产精品福利av| 日韩国产一区久久| 美女视频第一区二区三区免费观看网站 | 中文视频一区视频二区视频三区| 麻豆91在线播放| 日韩女优毛片在线| 成人在线免费观看一区| 怡红院av一区二区三区| 一区二区三区四区在线视频| 国产在线精品一区二区| 精品国产乱码久久久久久影片| 国产精品裸体一区二区三区| 一区二区视频在线| 91福利视频久久久久| 国产91露脸合集magnet| 欧美激情在线观看视频免费| 日韩黄色影视| 韩国毛片一区二区三区| 久久只精品国产| 久久久久久九九九九| 日韩国产在线一| 日韩久久免费av| 精品欧美国产| 美女视频免费一区| 精品国产乱码久久久久久1区2区 | 欧美区一区二区三区| 99久久免费精品高清特色大片| 国产精品久久久久一区二区三区| 亚洲va韩国va欧美va精四季| 韩国女主播一区| 欧美国产一区二区| 亚洲欧美日韩不卡一区二区三区| 国产一区二区三区| 国产精品网站在线播放| 亚洲区一区二区三区| 国产91在线观看丝袜| 中文字幕日本不卡| 在线视频一区二区免费| 91视频一区二区三区| 亚洲超丰满肉感bbw| 日韩精品中文字幕在线一区| 麻豆成人av| 国产在线精品一区二区不卡了| 国产精品嫩草99a| 91成人免费在线| 99精品国产高清在线观看| 视频一区视频二区中文| 精品国产不卡一区二区三区| 天天爽天天狠久久久| 成人国产精品免费网站| 亚洲一区影音先锋| 日韩欧美中文字幕制服| 欧美另类一区| 成人在线一区二区三区| 一级中文字幕一区二区| 欧美一区二区三区播放老司机| 玖玖玖精品中文字幕| 韩国毛片一区二区三区| 最好看的中文字幕久久| 欧美日本精品一区二区三区| 久久精品日韩精品| 国产精品一卡二卡在线观看| 亚洲乱码国产乱码精品精98午夜| 91精品久久久久久久99蜜桃| 欧美理论一区二区| 不卡av电影在线播放| 丝袜美腿成人在线| 日本一区二区三区在线不卡|